

Poursuite de la mise en place de la continuité pédagogique : en route vers l'UPJV...

Quelles capacités cibler **en priorité** dans l'optique d'une orientation en première année de licence à l'UPJV ?

Boîte à outils

Maîtriser les savoir-faire expérimentaux	
Savoir déterminer les unités et les dimensions	

Quantité de matière, masse, volume, volumique, densité	concentrations, masse	Définir ces grandeurs chimiques
		Connaître les relations entre ces différentes grandeurs chimiques

Mesures et incertitudes	Comprendre la notion d'incertitude	
	Evaluer une incertitude	
	Écrire, avec un nombre adapté de chiffres significatifs, le	
	résultat d'une mesure.	

Maîtriser les outils mathématiques de base	Calculs de dérivées	
	Fonctions sinus et cosinus	
	Fonction exponentielle	
	Fonction logarithme népérien	
	Intégration	
	Nombres complexes	

OBSERVER, Ondes et matière

Analyse spectrale

NOTIONS 57 CONTENUS	0014DÉ=511055 51/101D155	1 ^{ère} année de licence
NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	Attendus de l'UPJV
Spectres UV-visible Lien entre couleur perçue et longueur d'onde au maximum d'absorption de	Mettre en œuvre un protocole expérimental pour caractériser une espèce colorée.	
substances organiques ou inorganiques	Exploiter des spectres UV-visible.	
Construct ID	Exploiter un spectre IR pour déterminer des groupes caractéristiques à l'aide de tables de données ou de logiciels.	Comprendre le principe de la enectraccapie
Spectres IR Identification de liaisons à l'aide du nombre d'onde correspondant ; détermination de groupes	Associer un groupe caractéristique à une fonction dans le cas des alcool, aldéhyde, cétone, acide carboxylique, ester, amine,	Comprendre le principe de la spectroscopie Exploiter des spectres UV-visible.
caractéristiques.	amide.	Exploiter un spectre IR
Mise en évidence de la liaison hydrogène.	Connaître les règles de nomenclature de ces	Identifier les bandes d'absorption d'un spectre IR
	composés ainsi que celles des alcanes et des	
	alcènes.	Exploiter un spectre RMN
Spectres RMN du proton Identification de molécules organiques à	Relier un spectre RMN simple à une molécule organique donnée, à l'aide de tables de données ou de logiciels.	Interpréter l'allure des signaux
l'aide :	Identifier les protons équivalents. Relier la	
- du déplacement chimique ; - de l'intégration ;	multiplicité du signal au nombre de voisins.	
- de la multiplicité du signal : règle des (n+1)-uplets.	Extraire et exploiter des informations sur différents types de spectres et sur leurs utilisations.	

COMPRENDRE, lois et modèles

1. Temps, mouvement et évolution

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Temps, cinématique et dynamique newtoniennes Description du mouvement d'un point au	Extraire et exploiter des informations relatives à la mesure du temps pour justifier l'évolution de la définition de la seconde.	
cours du temps : vecteurs position, vitesse et accélération. Référentiel galiléen. Lois de Newton : principe d'inertie, $\sum_{\vec{F}} = \frac{d\vec{p}}{dt} \text{et principe des actions réciproques.}$	Choisir un référentiel d'étude. Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération. Définir la quantité de mouvement \vec{p} d'un point matériel. Connaître et exploiter les trois lois de Newton ;	Toutes les compétences exigibles
∠- ya	les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes. Mettre en œuvre une démarche expérimentale pour étudier un mouvement.	

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Conservation de la quantité de mouvement d'un système isolé.	Mettre en œuvre une démarche expérimentale pour interpréter un mode de propulsion par réaction à l'aide d'un bilan qualitatif de quantité de mouvement.	
Mouvement d'un satellite. Révolution de la Terre autour du Soleil.	Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite, d'une planète, est uniforme. Établir l'expression de sa vitesse et de sa période.	Toutes les competences exigibles
Lois de Kepler	Connaître les trois lois de Kepler ; exploiter la troisième dans le cas d'un mouvement circulaire.	

		1 ^{ère} année de licence
NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	Attendus de l'UPJV
Mesure du temps et oscillateur, amortissement	- les différents paramètres influençant la période d'un oscillateur mécanique ;	
Travail d'une force. Force conservative ; énergie potentielle.	- son amortissement. Établir et exploiter les expressions du travail d'une force constante (force de pesanteur, force électrique dans le cas d'un champ	
Forces non conservatives : exemple des frottements.	uniforme). Établir l'expression du travail d'une force de frottement d'intensité constante dans le cas d'une trajectoire rectiligne.	
Énergie mécanique.	Analyser les transferts énergétiques au cours	
Étude énergétique des oscillations libres d'un système mécanique. Dissipation d'énergie.	d'un mouvement d'un point matériel. Pratiquer une démarche expérimentale pour étudier l'évolution des énergies cinétique, potentielle et mécanique d'un oscillateur.	Toutes les compétences exigibles
Définition du temps atomique.	Extraire et exploiter des informations sur l'influence des phénomènes dissipatifs sur la problématique de la mesure du temps et la définition de la seconde. Extraire et exploiter des informations pour justifier l'utilisation des horloges atomiques dans la mesure du temps.	
Temps et relativité restreinte Invariance de la vitesse de la lumière et caractère relatif du temps. Postulat d'Einstein. Tests expérimentaux	Savoir que la vitesse de la lumière dans le vide est la même dans tous les référentiels galiléens	
de l'invariance de la vitesse de la lumière.	Définir la notion de temps propre. Exploiter la relation entre durée propre et durée	
Notion d'événement. Temps propre. Dilatation des durées. Preuves expérimentales.	mesurée. Extraire et exploiter des informations relatives à une situation concrète où le caractère relatif du temps est à prendre en compte.	

2. Structure et transformation de la matière

		1 ^{ère} année de licence
NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	Attendus de l'UPJV
Représentation spatiale des molécules Chiralité : définition, approche historique.	Reconnaître des espèces chirales à partir de leur représentation.	
Représentation de Cram.	Utiliser la représentation de Cram.	
Carbone asymétrique. Chiralité des acides α-aminés.	Identifier les atomes de carbone asymétrique d'une molécule donnée.	
diastéréoisomérie (Z/E, deux atomes de	À partir d'un modèle moléculaire ou d'une représentation, reconnaître si des molécules	Identifier une molécule chirale
carbone asymétriques).	sont identiques, énantiomères ou diastéréoisomères. <i>Pratiquer une démarche expérimentale pour</i>	Distinguer des stéréoisomères
Conformation : rotation autour d'une	mettre en évidence des propriétés différentes de diastéréoisomères.	Comprendre les propriétés biologiques des stéréoisomères
liaison simple; conformation la plus stable.	Visualiser, à partir d'un modèle moléculaire ou d'un logiciel de simulation, les différentes conformations d'une molécule.	Représenter des molécules
Formule topologique des molécules organiques.	Utiliser la représentation topologique des molécules organiques.	
Propriétés biologiques et stéréoisomérie.	Extraire et exploiter des informations sur : - les propriétés biologiques de stéréoisomères, - les conformations de molécules biologiques, pour mettre en évidence l'importance de la stéréoisomérie dans la nature.	

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Transformation en chimie organique Aspect macroscopique: - Modification de chaîne, modification de groupe caractéristique Grandes catégories de réactions en chimie organique: substitution, addition, élimination.	Reconnaître les groupes caractéristiques dans les alcool, aldéhyde, cétone, acide carboxylique, ester, amine, amide. Utiliser le nom systématique d'une espèce chimique organique pour en déterminer les groupes caractéristiques et la chaîne carbonée. Distinguer une modification de chaîne d'une modification de groupe caractéristique. Déterminer la catégorie d'une réaction (substitution, addition, élimination) à partir de l'examen de la nature des réactifs et des produits.	Connaître les règles de nomenclature Repérer un groupe caractéristique
Aspect microscopique: - Liaison polarisée, site donneur et site accepteur de doublet d'électrons. - Interaction entre des sites donneurs et accepteurs de doublet d'électrons; représentation du mouvement d'un doublet d'électrons à l'aide d'une flèche courbe lors d'une étape d'un mécanisme réactionnel.	Déterminer la polarisation des liaisons en lien avec l'électronégativité (table fournie). Identifier un site donneur, un site accepteur de doublet d'électrons. Pour une ou plusieurs étapes d'un mécanisme réactionnel donné, relier par une flèche courbe les sites donneur et accepteur en vue d'expliquer la formation ou la rupture de liaisons.	Identifier les sites donneur et accepteurs d'électrons

8

		1 ^{ère} année de licence
NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	Attendus de l'UPJV
Réaction chimique par échange de proton Le pH: définition, mesure.	Mesurer le pH d'une solution aqueuse.	
Théorie de Brönsted : acides faibles, bases faibles ; notion d'équilibre ; couple acide-base ; constante d'acidité Ka.	Reconnaître un acide, une base dans la théorie de Brönsted. Utiliser les symbolismes →, ← et ➡ dans	Connaître le pH des solutions
Échelle des pKa dans l'eau, produit ionique de l'eau ; domaines de prédominance (cas des acides carboxyliques, des amines, des acides α-aminés).	l'écriture des réactions chimiques pour rendre compte des situations observées. Identifier l'espèce prédominante d'un couple acide-base connaissant le pH du milieu et le pKa du couple.	Établir le domaine de prédominance d'un couple acide/base
annies).	Mettre en oeuvre une démarche expérimentale pour déterminer une constante d'acidité.	Identifier les couples acide/base
Réactions quasi-totales en faveur des produits : - acide fort, base forte dans l'eau ;	Calculer le pH d'une solution aqueuse d'acide fort ou de base forte de concentration usuelle.	Calculer le pH d'un acide fort ou d'une base forte
- mélange d'un acide fort et d'une base forte dans l'eau.		Déterminer le caractère acide ou basique d'une solution
Réaction entre un acide fort et une base forte : aspect thermique de la réaction. Sécurité.	Mettre en évidence l'influence des quantités de matière mises en jeu sur l'élévation de température observée.	
Contrôle du pH : solution tampon ; rôle en milieu biologique.	Extraire et exploiter des informations pour montrer l'importance du contrôle du pH dans un milieu biologique.	

Important

- La réaction chimique : savoir écrire les équations de réactions simple et complexe
- Savoir identifier les espèces actives dans la réaction et écrire l'équation de réaction en conséquence
- Gestion de l'équation de réaction : réactif limitant, relation avec les quantités de matière
- Rendement
- Calculs pour les préparations de solution (étalon ou autre) : relation quantité de matière-concentration-volumemasse-masse volumique

3. Énergie, matière et rayonnement

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence
		Attendus de l'UPJV
Du macroscopique au microscopique	Extraire et exploiter des informations sur un dispositif expérimental permettant de visualiser les atomes et les molécules.	
Constante d'Avogadro.	Évaluer des ordres de grandeurs relatifs aux domaines microscopique et macroscopique.	
Transferts d'énergie entre systèmes		
macroscopiques Notions de système et d'énergie interne. Interprétation microscopique.	Savoir que l'énergie interne d'un système macroscopique résulte de contributions microscopiques.	
Capacité thermique.	Connaître et exploiter la relation entre la variation d'énergie interne et la variation de température pour un corps dans un état condensé.	Toutes les compétences exigibles
Transferts thermiques : conduction,	Interpréter les transferts thermiques dans la	Toutes les competences exiginies
convection, rayonnement.	matière à l'échelle microscopique.	
Flux thermique. Résistance thermique.	Exploiter la relation entre le flux thermique à	
Notion d'irréversibilité.	travers une paroi plane et l'écart de	
Bilans d'énergie.	température entre ses deux faces. Établir un bilan énergétique faisant intervenir transfert thermique et travail.	
Transferts quantiques d'énergie	Connaître le principe de l'émission stimulée et	
Émission et absorption quantiques.	les principales propriétés du laser (directivité,	
Émission stimulée et amplification d'une onde lumineuse.	monochromaticité, concentration spatiale et temporelle de l'énergie).	
Oscillateur optique : principe du laser.	Mettre en oeuvre un protocole expérimental utilisant un laser comme outil d'investigation ou pour transmettre de l'information.	
Transitions d'énergie : électroniques, vibratoires.	Associer un domaine spectral à la nature de la transition mise en jeu.	

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Dualité onde-particule Photon et onde lumineuse.	Savoir que la lumière présente des aspects ondulatoire et particulaire.	
Particule matérielle et onde de matière ; relation de de Broglie.	Extraire et exploiter des informations sur les ondes de matière et sur la dualité ondeparticule. Connaître et utiliser la relation $p = h/2$. Identifier des situations physiques où le caractère ondulatoire de la matière est significatif.	Toutes les compétences exigibles
Interférences photon par photon, particule de matière par particule de matière.	Extraire et exploiter des informations sur les phénomènes quantiques pour mettre en	
	évidence leur aspect probabiliste.	

AGIR, défis du XXIe siècle

1. Économiser les ressources et respecter l'environnement

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Enjeux énergétiques Nouvelles chaînes énergétiques. Économies d'énergie. Apport de la chimie au respect de	Extraire et exploiter des informations sur des réalisations ou des projets scientifiques répondant à des problématiques énergétiques contemporaines. Faire un bilan énergétique dans les domaines de l'habitat ou du transport. Argumenter sur des solutions permettant de réaliser des économies d'énergie.	Économiser les atomes et réduire les déchets
l'environnement Chimie durable : - économie d'atomes ; - limitation des déchets ; - agro ressources ; - chimie douce ; - choix des solvants ; - recyclage. Valorisation du dioxyde de carbone.	Extraire et exploiter des informations en lien avec : - la chimie durable, - la valorisation du dioxyde de carbone pour comparer les avantages et les inconvénients de procédés de synthèse du point de vue du respect de l'environnement.	Appliquer les principes de la chimie verte

NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	1 ^{ère} année de licence Attendus de l'UPJV
Contrôle de la qualité par dosage Dosages par étalonnage : - spectrophotométrie ; loi de Beer-Lambert - conductimétrie ; explication qualitative de la loi de Kohlrausch, par analogie avec la loi de Beer-Lambert.	l'aide de courbes d'étalonnage en utilisant la	bosei pai etaioiiilage
Dosages par titrage direct. Réaction support de titrage ; caractère quantitatif. Équivalence dans un titrage ; repérage de l'équivalence pour un titrage pH-métrique, conductimétrique et par utilisation d'un indicateur de fin de réaction.	Pratiquer une démarche expérimentale pour déterminer la concentration d'une espèce chimique par titrage par le suivi d'une grandeur	Exploiter un titrage acido-basique

		1 ^{ère} année de licence
NOTIONS ET CONTENUS	COMPÉTENCES EXIGIBLES	Attendus de l'UPJV
Stratégie de la synthèse organique Protocole de synthèse organique: - identification des réactifs, du solvant, du catalyseur, des produits; - détermination des quantités des espèces mises en jeu, du réactif limitant; - choix des paramètres expérimentaux: température, solvant, durée de la réaction, pH; - choix du montage, de la technique de purification, de l'analyse du produit; - calcul d'un rendement; - aspects liés à la sécurité; - coûts.	en jeu, leurs quantités et les paramètres expérimentaux. Justifier le choix des techniques de synthèse et d'analyse utilisées.	Choisir une stratégie de synthèse Choisir un réactif, protéger des fonctions Réaliser une synthèse au laboratoire
Sélectivité en chimie organique Composé polyfonctionnel : réactif chimiosélectif, protection de fonctions.	Extraire et exploiter des informations: - sur l'utilisation de réactifs chimiosélectifs, - sur la protection d'une fonction dans le cas de la synthèse peptidique, pour mettre en évidence le caractère sélectif ou non d'une réaction. Pratiquer une démarche expérimentale pour synthétiser une molécule organique d'intérêt biologique à partir d'un protocole. Identifier des réactifs et des produits à l'aide de spectres et de tables fournis.	

MME AUBRY-IA-IPR DE PHYSIQUE-CHIMIE

POUR L'ÉCOLE
DE LA CONFIANCE

UPJV : MME GU
15