TP-cours A9 : Pouvoir calorifique d'un combustible.

Objectifs:

- > Estimer le pouvoir calorifique d'un combustible ;
- > Estimer l'énergie molaire de réaction à partir des énergies de liaison.

<u>Doc. 1</u> – Combustion et équation. (A Savoir)

- La réaction de **combustion** est une réaction d'**oxydoréduction** au cours de laquelle :
 - un combustible s'oxyde;
- un **comburant**, généralement le dioxygène, se **réduit**.

Pour activer une réaction, une énergie (d'activation) doit être apportée.

• Lors de la **combustion** d'une molécule organique (composée de carbone, d'hydrogène et éventuellement d'oxygène), dans le dioxygène, les seuls **produits** sont de l'**eau** et du **dioxyde de carbone**, si la combustion est **complète**.

<u>Remarque</u>: les alcanes, les alcools, les sucres, les lipides, le bois,... sont des combustibles organiques.

<u>Doc. 2</u> – Pouvoir calorifique. (A Savoir)

Le **pouvoir calorifique** d'un combustible **PC** est l'énergie dégagée par la combustion complète d'un kilogramme de combustible. Il s'exprime en joule par kilogramme $(J.kg^{-1})$.

L'énergie libérée ${\bf Q}$ par la combustion d'une masse m de combustible, peut se calculer par la relation :

$$Q = m.PC$$

Avec : Q en joules (J); m en (kg) et PC en (J.kg $^{-1}$).

<u>Doc. 3</u> – Energie thermique. (A ne pas connaître)

L'énergie thermique Q échangée par un corps pur de masse m, dont la température varie de θ_i (température initiale) à θ_f (température finale), sans changer d'état, est donnée par la relation :

$$Q = m.c.(\theta_f - \theta_i)$$

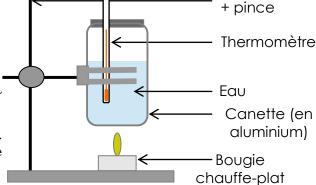
Avec : $\bf Q$ en joules (J) ; $\bf m$ en (kg) ; θ_i , θ_f en (°C) et $\bf c$: capacité thermique massique du corps en (J.°C⁻¹.kg⁻¹).

Données: Ceau = 4180

 $J.^{\circ}C^{-1}.kg^{-1}$; $C_{alu} = 900 J.^{\circ}C^{-1}$

Potence

I) Manipulation.


Peser la masse de la canette :

: | m_{Can} =

Peser la masse de la bougie :

- Mesurer un volume d'eau V = 200 mL à une température $\theta \sim 10^{\circ}\text{C}$ et la verser dans le récipient.
- Mettre en place le montage, agiter l'eau (pour homogénéiser). Allumer la bougie et noter simultanément la température initiale et l'heure :

$$\theta_i = ; t_i =$$

Agiter en permanence, lorsque la température approche 30°C, éteindre la bougie et noter l'heure ainsi que

la température finale :

; †_f

Peser à nouveau la masse de la bougie (après refroidissement de celle-ci) :

II) Exploitation.

1°) Pour cette manipulation, calculer les valeurs de l'énergie thermique Q_I reçue par l'eau, de l'énergie thermique Q_2 reçue par la canette (cf doc. 3). En déduire l'énergie thermique Q reçue par l'ensemble {eau + canette}.

<u>Données</u>: $\rho_{\text{eau}} = 1 \text{ g.mL}^{-1}$;

2°) Nous faiso canette avec s couvoir calorif	on eau. l	En utilisa	int le rés	_	_				-	_
B°) Dans le ta précision du ré		-après, n	ous allor	ns reporte	er l'enser	mble des	résultat	s de la c	lasse, afin d	l'améliorer l
Groupe	1	2	3	4	5	6	7	8	Moyenne PC	Incertitude-
PC (MJ.kg ⁻¹)										
• L'incertitude- • u(PC) : pour • 4°) Le résultat ou enco Donner le résu	expérim re :	inty » sur ental est \overline{PC} – $u(P$ PC, sous	<pre>PC. alors do: C) < P</pre>	nné sous C < PC	la forme : +u(PC)	suivante	: <i>PC</i>	$C = \overline{PC} \pm i$	u(PC) J.kg=	1
5°) Une bougi						_	_			_
	ırs possil	bles.								
les tables, est										
les tables, est sources d'erreu III) Pour a 6°) La formul					_			on do lo	régetion de	a combustic

Calculer la quantité de matière n_A d'acide stearique ayant reagi lors de la manipulation.
<u>Donnée – masse molaire de l'acide stéarique :</u> $M_A = 284 \text{ g.mol}^{-1}$.
8°) Lors d'une combustion, le dioxygène est en excès (le plus souvent), le réactif limitant est donc le
combustible, ici l'acide stéarique. En utilisant l'équation de la réaction, déterminer la quantité de matière n_B
de dioxyde de carbone produit lors de la manipulation. Puis, en déduire la masse correspondante mb. (L'usage

<u>Donnée – masse molaire du dioxyde de carbone :</u> $M_{CO2} = 44 \text{ g.mol}^{-1}$.

IV) Complément de COURS : Énergie molaire de réaction.

1°) Énergie de liaison.

d'un tableau d'avancement est ici superflu).

Énergie (J)

En

2 atomes d'oxygène covalente,
pris séparément stabilité ér

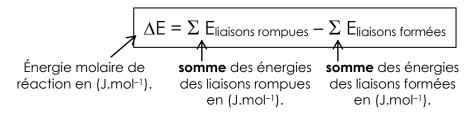
L'é

átomes e
rompre ce
et doc. 4).

dioxygène O₂

En se liant par une liaison covalente, deux atomes gagnent en stabilité énergétique.

L'énergie de liaison entre deux atomes est l'énergie nécessaire pour rompre cette liaison (voir figure ci-contre et doc. 4).


Elle s'exprime en (J.mol⁻¹).

2°) Énergie molaire de réaction.

L'énergie molaire de réaction ΔE est l'énergie libérée par la combustion <u>d'une mole</u> de combustible. Elle peut être calculée à partir des énergies de liaisons comme suit, si l'équation de la réaction est écrite avec un nombre stœchiométrique égal à 1 pour le combustible :

<u>Doc. 4</u> – Exemples d'énergies de liaison.

Liaison	Énergie de liaison en (kJ.mol ⁻¹)
C – C	345
C-O	358
C – H	415
H – H	436
O – H	463
0 = 0	498
C = C	615
C = 0	804

Remarque 1 : $\Delta E < 0$, car les combustions sont exothermiques, le système chimique **perd** de l'énergie.

<u>Exemple</u>: Énergie molaire de combustion du méthane (CH₄). $H - C - H + O = O \longrightarrow O = C = O + H O H$ $\Rightarrow \Delta E = (4 E_{C-H} + 2 E_{O=O}) - (2 E_{C=O} + 4 E_{O-H})$ $\Rightarrow \Delta E = (4 \times 415 + 2 \times 498) - (2 \times 804 + 4 \times 463)$ $=> \Delta E = -804 \text{ kJ.mol}^{-1}$ L'énergie molaire de combustion du méthane est de – 804 kJ.mol-1. Remarque 2: Pouvoir calorique PC et énergie molaire de réaction ΔE sont liés par la relation : $\Delta E = -PC \times M$ avec ΔE en $(J.mol^{-1})$; PC en $(J.kg^{-1})$ et M : masse molaire en $(kg.mol^{-1})$. Application: Montrer que l'énergie molaire de combustion de l'éthanol (C₂H₆O) est de - 1259 kJ.mol⁻¹, puis calculer son pouvoir calorifique. <u>Données</u>: $M_C = 12,0 \text{ g.mol}^{-1}$; $M_H = 1,0 \text{ g.mol}^{-1}$; et $M_O = 16,0 \text{ g.mol}^{-1}$

TP A9 : Pouvoir calorifique d'un combustible – Fiche matériel.

<u>Au bureau :</u>

- balance(s);
- grand cristallisoir, avec de l'eau réfrigérée à ~ 10°C (avec des glaçons) : 200 mL par groupe
- Bécher 400 mL pour prélever l'eau dans le cristallisoir ;

Par groupe:

- cannette soda (vide);
- potence avec pince pour tenir la canette;
- thermomètre (électronique, si possible);
- bougie chauffe-plat ;
- éprouvette 250 mL (ou 100 mL), pour mesurer les volumes d'eau ;
- petit entonnoir;
- allumettes;